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A. INVESTIGATIONS OF TILE SOL-GEL TRANSITION

A new critical line in a model for the sol-gel transition

Site-bond correlated percolation has been recently introduced by our group, as

a model to study solvent effects in the sol-gel transition. This model has

stimulated further research because of its interesting behavior. In particular,

Delyon, Souillard and Stauffer have found a line of percolation transitions without

the appearance of an infinite cluster, similar to the Griffiths singularity in a

dilute ferromagnet. We have complemented this study and shown that there is another

line of critical points where the pair-connectedness function becomes critical

without the disappearance of the infinite cluster. The physical consequence of such

a critical line is the formation of a gel with a network structure completely

different from most physical gels.

Uigdal-Kadanoff renormalization group analysis for a sol-gel transition model

The site-bond Ising correlated percolation model is not easily analyzed,

particularly in 3 dimensions. This is due to the difficulty in satisfying the Ising

symmetry and the connectivity properties. In order to circumvent this problem, we

have carried out an analysis using the Migdal-Kadanoff R.G. We have proposed an

alternative scheme which gives good results for the random-site-bond percolation

problem. We intend to generalize this procedure to the correlated case.

Study of droplets for a statistical mechanical model of gelatiun

in three dimensions

Using a Monte Carlo simulation, we have studied the droplet size distribution

for the Ising correlated site-bond percolation problem in three dimensions. The

exponent for that distribution is found to agree well with the correspondin&"

Chif f, , * ,:' " on
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exponent of the Ising model. We also have discussed the relation between tht

susceptibility and the second moment by using the dilute Potts formulation of this

percolation problem.

B. STRUCTURE OF BRANCHED POLYMERS

Branched polymer in a solvent

A model for branched polymers in a solvent is studied as a function of three

parameters: the chemical potential of the sites, the chemical potential of the

bonds, and the nearest-neighbor interaction amongst the sites. We have shown that

this problem can be mapped into a generalized percolation problem. A Potts

formalism for this problem can be formulated to which the Migdal-Kadanoff RG has

been applied. We have found a surface of critical points corresponding to a

randomly-branched polymer (or random animal), a line of tricritical points

corresponding to a polymer collapse (9-point), a higher order critical point which

corresponds to percolation, and a first-order phase transition which corresonds to a

compact polymer. The critical surface terminates at the 9-line, and the 9-line

ends at the percolation point. This new prediction of a higher-order percolation

point where the branched polymer changes its structure is amenable to experimental

and computer verification.

Flory theory for directed branched polymers

We have applied the Flory theory to branched polymeric systems in which there

is a preferential direction for polymerization to occur. This anisotropy gives rise

to new types of critical behavior that can be accounted for accurately and quite

simply by a Flory approach. Specifically, we find an upper critical spatial

dimension of d - dc - 7 and correlation length exponents of
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= (d + ll)/4(d + 2) J) 9/ (d

parallel and perpendicular to the anisotropy respectively.

C. NUCLEATION AND SPINIODAL DECOMPOSITION

One of the more interesting and important (from a materials viewpoint) areas of

polymer physics is the study of metastable polymers. Both nucleation and growth and

spinodal decomposition are important mechanisms by which polymeric materials are

formed. We have begun an integrated experimental and theoretical program to

understand nucleation and growth and spinodal decomposition in polymer systems.

Spinodals in medium-range systems

Although the spinodal concept has been questioned, it has been useful in

understanding experimental data in polymer systems, and we have begun to study such

medium-range interactions in continuum systems. No evidence of a spinodal was

found, but we were able to show that pseudospinodals (i.e., extrapolations into the

metastable region) converge rapidly with the interaction range to the true spinodal

(if it exists). We also observed, for the first time, a breakdown of the classical

droplet model.

The research done so far is in lattice systems. To make our studies more

realistic we have begun to examine continuum systems. The interaction between the

particles is chosen to be a hard-core potential with an additional attractive square

well. If the spinodal line exists, the compressibility should diverge as this line

is approached.

For short-range interactions, as the metastable region is probed, the system
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becomes becomes unstable before the predicted spinodal line is reached. To

facilitate a deeper probe into the metastable region, the interaction range is

extended by increasing the width of the attractive well. The compressibility is

then measured as a function of both density and interaction range.

Dynamics of supercooled fluids and polymer melts

We have investigated the dynamics of supercouled fluids and polymer melts based

on a static mean-field theory of freezing developed by Grewe and Klein, and the

dynamical theory of Cahn and Hilliard. A nonlocal term is introduced into the

standard Landau-Ginsberg-Wilson Hamiltonian and the resulting dynamics are explored.

It is shown that for short times the supercooled liquid is unstable to density

fluctuations of nonzero wavevector k. The value of k at which this instability

first appears is on the order of the inverse range of the interaction potential.

MANUSCRIPTS SUBMITTED OR PUBLISHED UNDER AFOSR SPONSORSHIP

DURING THE PERIOD I OCTOBER 1981 - 30 SEPTEMBER 1982

A. Coniglio, 11. E. Stanley and W. Klein, "Solvent effects on polymer gels: A

statistical-mechanical model," Phys. Rev. B 25, 6805-6821 (1982).
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Solvent effects on polymer gels: A statistical-mechanical model

A. Coniglio,* H. E. Stanley, and W. Klein
Center for Polymer Studies and Department of Physics, Boston University, Boston. Massachusetts 02215

(Received 1 February 1982)

A statistical-mechanical model for reversible gelation is developed. This model takes
into account solvent effects, which usually are neglected in the classical theory of gela-
tion. The exact solution of this model is given for the limiting case in which "loops" or
intermolecular interactions may be neglected (Cayley tree). The general phase diagram is
obtained and it is shown that, with a particular choice of a solvent, one can realize the in-
teresting situation in which gelation point and consolute point coincide. This point has
peculiar properties associated with the simultaneous divergence of "connectivity" and
thermal fluctuations. The recent experimental data of Tanaka and collaborators are in
good qualitative agreement with the predictions of the model.

I. INTRODUCTION mers made up of M monomers are permitted to
crosslink. The detailed derivation of the appropri-

Much of the progress of the last decade in sta- ate formula are given in Appendixes A and B.
tistical mechanics stems from the fact that rela-
tively simple and therefore tractable models have
proved sufficient to describe extremely subtle I. THE MODEL (M = 1)
cooperative phenomena. Three examples are
shown schematically in Fig. 1: We shall first describe our model for the sim-

(i) A fluid near its critical point. The Ising or plest case of gelation, the polyfunctional condensa-
lattice-gas model' has proved remarkably success- tion of f-functional monomers. Suppose all the
ful in interpreting a wide range of data near the monomers are identical, and that each has f-
critical points of fluids. 2 This stems from the fact functional groups that can react with one of the f
that the "essential physics" of the problem is an groups of another monomer. The simplest case,
interparticle interaction potential characterized by f =0, produces no reactions at all. The next sim-
a hard-core repulsion and a short-range attraction. plest case, f = 1, results in dimers only. If f = 2,

(ii) Dilute and semidilute polymer solutions. The we can have unbranched linear polymers. For

n =0 limit of the n-vector model has proved capa- f > 3, we form branched polymers, as illustrated in

ble of describing polymer solutions in the dilute3

and semidilute4 regimes, where the magnetic field
plays the role of concentration. f M

(iii) Polymer gelation. The essential physical, . ..........
feature of a gel is connectivity, and hence one ex- 0.uTE P.YE.- Eke ok ....... -
pects percolation phenomena to be relevant.6 As
we shall see, temperature-dependent effects such as GL .......... Cnt............ . S.

those due to the presence of solvent are excluded Iner qw l peam

from simple "pure percolation."' It is the purpose
of this paper to suitably generalize pure percolation FIG. 1. Schematic illustration of the application of

in order to incorporate such effects.! specific model Hamiltonians to capture the essential

In Sec. II we shall describe our approach using physics embodied by various physical systems near their

polyfunctional condensation, the simplest example respective critical points. The symbol n refers to the

gelation. number of components of the order parameter in an n-
that illustrates the basic phenomenon of evector model (isotropically interacting n-dimensional
In Sec. III we derive the equation of state, while in classical spins), while the symbol s refers to the number
Sec. IV we describe the connectivity properties. of discrete states in a s-state Ports model. The "critical
Then in Sec. V we describe the more general gela- point" of a dilute polymer solution corresponds to the
tion of "vulcanization" phenomena in which poly- limit N - o, where N is the polymerization index.

25 6805 © 1982 The American Physical Society
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FIG. 2. Illustration of the simplest gelaion phenomenon, polyfunctional condensation of f-functional monomers.
The f-functional monomer shown in (a) is trimethoyl benzene; it has three "functional" groups which can react to form
ether linkages. If f were 2, then the most complex structures possible would be chains and rings. However, since f > 2
here, there exists the possibility of forming branched networks. In (bi and (c) are shown beakers at successive stages of
reaction. This figure is from Gordon and Ross-Murphy (Ref. 9).

Fig. 2 for a particular example with f =3,
trimethoyl benzene.' Each benzene ring has three Z - -
groups that can react to form an ester linkage. 5J L
This process is characterized by a single parameter - r " L'

a, termed the conversion, which is the fraction of - - , -- "
reacted groups. Clearly if a= 0, only monomers
are present. If 0<a < 1, there exists a distribution
of finite polymers of all possible sizes. However, -

the probability of an infinite polymer or "gel" is 7 1- 7 - _
zero for all values of less than a critical value a. _a)kb)

For a > a, there is a nonzero probability for the '. , '-
occurrence of a single branched polymer that is in- -
finite in spatial extent. Thus the probability of the L-
gel molecule to occur jumps discontinuously from
zero for a < a, to unity for a > at, and hence the .- -- - -
connectivity of the system chAnges drastically at Z7
a =a,. This "phase transition" is termed the gela-
tion threshold.

The first successful model to capture the essen-
tial physics of the gelation threshold was proposed FIG. 3. Phenomenon of bond percolation: a finite
40 years ago by Fory and developed in a series of section (16x 16) of an infinite "fence," in which a frac-
classic papers by both Flory' ° and Stockmayer." tion ps of the links are conducting while the remaining
(Also see the classic book by Flory. 2 ) This fraction qB = I -p, are insulating. Four choices of the
"Flory-Stockmayer" (WS) model not only predicts parameter pr are shown: (a)p = 0. 2, (b) p, = 0. 4, (c)
the occurrence of a gelation threshold a=a, but p#=0.6, and (d) p#= 0.8.
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at first sight seems to be lattice independent: One
'I.,,, c s,.u only requires that a given polymer be forbidden to
________ '_ _ loop back upon itself. In short, "intramolecular

interactions" are excluded. This assumption is ful-
toi pm' ,' ly equivalent (as far as critical behavior is con-

,_,_,, __ _s ,wow cerned) to the statement that the polyfunctional
ac monomers be required to occupy the sites of a

Cayley-tree pseudolattice: To each configurationFIG. 4.. Analogy betweeen the phase diagrams of of the f-functional monomers there is a one-to-one

pure bond percolation and polyfunctiona condensation orrepondnction of bondsoon

gelatnon of f-functional monomers). The role of p in correspondence with a configuration of bonds on

gelation is played by a. which is termed the "conver- the Cayley tree with coordination number z =f.

sion" or "extent of reaction"; it may be thought of as The effect of allowing for loops is clear, at least

the fraction of intact bonds. on a qualitative level. Clearly the threshold is ex-
pected to increase, since extra bonds will be formed

also provides precise predictions for the family of that will merely create a loop rather than contri-

critical-point exponents characterizing the behavior buting to the formation of an infinite branched
of various quantitites in the immediate vicinity of network. Moreover, we expect that the behavior of

the system in the immediate vicinity of the gel
aFo point to be characterized by different critical ex-For the purposes of this paper it is most ap-poet.Ifaifwartoblveheultyf
propriate to explain the FS model in the context of portents. In fact, if we are to believe the utility of

lattice models, then it turns out that exponents are
random-bond percolation, which in turn is illus- shifted from their Cayley-tree values quite consid-
trated in Fig. 3. Suppose we have an infinitely
higad inFi.tely luog wre fen i inelso erably (Fig. 5). Of course, one could well questionhigh and infintely long wire fence. Imagine also the appropriateness of a lattice model to represent

that a randomly chosen fraction pB of the links of t aoriatens oatce mdelntodreprea continuum system.' 3 ' Hence much needed are

this fence are conducting while the remaining frac- calculations for "continuum percolation" that are
tion (1 -ps) are insulating. Computer simulations sufficiently accurate to make meaningful predic-
of a finite (16X 16) section of this fence are shown tions concerning critical-point exponents.

in Fig. 3 for p, =0.2, 0.4, 0.6, and 0.8. Experimental evidence for departures for "classi-

Clearly, for Pp small, as in Fig. 3(a), the system cal" critical-point exponents is somewhat incon-
consists of small clusters of conducting bonds. In clusive at the present time. A literature search
3(b) the conducting fraction Pb has doubled, yet the focused on this question was recently carried out
system still consists of only finite clusters--the by Brauner,' 5 who concluded that no clear-cut
"scale" has increased, but not the essential macro- answer emerges despite rather extensive analysis of
scopic conductivity. In 3(c), pp =0.6, and the sys-
tem is macroscopically different: In addition to
the finite clusters, there is a single cluster that is , rTERNAL t) PERCOLATlIO tt EL

infinite in spatial extent (of course, the fence must I 1 5 1 -. It
be infinite if the cluster is to be infinite). For
some value of p. in between Figs. 3(b) and 3(c), LC tVLat
there is a threshold pj; below pB the fence cannot " ,

conduct, while above p' it can. Thus its macro- .l cosifi bo V, brfl "'i C" im."t

scopic properties change suddenly as a microscopic 4. IA(Ilktci P sh
parameter pi increases infinitesimally from ps'-- iit - ciuier Wye"

top# +6 [Fig. 4(a)]. M PlI, - 11 "ch"

Similarly, below the gelation threshold a,, the X s.1 D P -o" -,

system of Fig. 2 consists of only finite-size poly- G1,) ,1t I" o"*-"
Zillr • T Ir ly Faw'- (m Flory

mes; it cannot, e.g., sustain a shear stresw. Above .- (20-y/D.$/ 0..'
the threshold it can. Thus the macroscopic prop-
erties change suddenly as a microscopic parameter
a. the extent of reaction (or equivalently, the frac- FIG. 5. Illustration of the analogies between (a) an

tion of formed croslinks), increases infinitesimally ordinary thermal phase transition (e.g., an Ising or
from a, -5 to a, +5 (Fig. 4(b)]. lattice-gas model), b) bond percolation, and (c) poly-

The FS model was formulated in a fashion that functional condensation.
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Dresponds to moving to the right along the horizon-
,.FSinoaei tal dashed line.

GEL B. Correlations among molecules

We shall assume that the monomers and solvent
molecules are not randomly distributed among the

0 _ Ps sites. Rather, we shall assume a correlation of the
standard lattice-gas model sort (Fig. 7). In specify-

FIG. 6. Schematic phase diagram of random-site, ing the interactions, we must consider that the
random-bond percolation, where p, is the site occupation monomers can interact with each other in two
probability and PB is the probability that a randomly ways. One is the usual van der Waals interaction,choen bond is found to be intact h and the other is a directional interaction that leads

to chemical bonds.

The particle-particle interaction of this system is
reasonably approximated by the following nearest-

existing data. A recent set of experiments by neighbor interactions: - W", the soivent-solvent
Schmidt and Burchard suggests that the Cayley- interaction energy, - WAR, the mone 'er-solvent
tree predictions may be quite adequate. 16 Howev- interaction energy, and
er, problems arise due to the paucity of data ex-
tremely close to the gel point-since only there are
exponents expected to depart from their classical ER - W

values.' -E.
In the FS model solvent effects are not included.

Nor are temperature effects included in any statist-
ical mechanical fashion: All states of a system where - WgB is the van der Wails energy (weight
consisting of b occupied bonds are equally prob- P,) and -E is the bonding energy (weight l -p).
able. This simplifying feature has great merit in The interaction -els needs some further justifi-
that the FS model is extremely tractable, cation. Two monomers can interact in two dif-

In FS theory all sites are occupied by monomers. ferent ways. The first is the usual van der Wails
However, we know that solvent effects are impor- type of attraction, which we have approximated
tant in gelating systems. Two simplifying assump- with a nearest-neighbor attraction - WRR. The
tions of the FS theory are the following:

(i) the absence of solvent molecules, and
(ii) the absence of correlations between the mole- 0 0 i 00 .0-9 0 1 9 0-3cules. o-'o o o - "96-- -

0 00 0 00 0

Both solvent effects and correlations are taken into 'y o 6-
account in this paper. Oro.o .t P 0 t

(b i) _10C
A. Solvent effects

Suppose we allow the sites to be of two sorts, A FIG. 7. (a) and (b) All sites are occupied by mono-
and B. A sites are occupied by monomers and B mers (open circle), as in the Flory-Stockmayer model of
sites by solvent. The original "random-bond" pgelation. The wavy lines correspond to chemical bonds
colation problem is now a "random-site-bond"p between two monomers, while Pa is the probability of

such a bond being present. (c) The model of gelationproblem"I; the FS critical point in the simple phase proposed here. Each site can be occupied by either a
diagram of Fig. 4(b) is now an entire "line" of crit- monomer (circle) or a solvent molecule (dot). The wavy
ical points (Fig. 6). If p, is the density of A sites, line corresponds to a reversible bond. We find P,, given
then FS theory corresponds to the special case by Eq, (12), is a function of the temperature. The
p, - I (heavy solid line). A typical experiment cor- monomers are correlated.
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.,,nd is the interaction which leads to bonds (e.g., where 6= 1/kBT, while t, and P1 are the chemi-
S ,Jrogen bonds), which we have approximated cal potentials of species A and B. The first sum is

.,th .nother nearest-neighbor interaction -E over all the monomer-solvent configurations with
, , - WIB. Of course this second interaction oc- N.4 and NB fixed. The second sum is over all

.un only when the monomers are in a particular values of N 4 =N -N B . By averaging over all
*onfiguration. For a given pair of nearest-neighbor possible energies of interaction FB one obtains the
rrnonomers, the ratio between the number of config- partition function Z.,v for this model of reversible
uratons .NE which lead to hydrogen bonding (ener- gelation
;. -E) and the number of configurations N. .

%hich do not; NE /Na, =( I -p. )/p, should there- ZN =ZV(EBB)

fore be much less than unityb Note that the entro- The partition function (5) can also be regarded as
py difference between the unbound state (with en- an annealed random-bond ferromagnetic problem.rgy - Ws) and unbound state (with energy -E) Uigteiettes e by Using the identities
is given by

S =kslnp /(l -p.) NA I1l, N 8 = ,-I, (6)

The Hamiltonian for a system of N, molecules and Eq. (3), we can write Eq. (4) in the form
of solvent and NB monomers can be written as

(NAw) nnH+Eaan, n, Z,,v Ia=Z, 'I exp /

+WAB(n,H nJ+n, nJ). + a(Eaa) , n .
(Qj)

(2) (7)
The sum is over all possible AA, BB and AB Here( nearest-neighbor pairs, where I1 I if site j is oc-
cupied by a solvent molecule, and -=0 other- Z, =exp 19((/2)NWA +AA NJt (8a)
wise. Similarly nfl:= I if site j is occupied by a
monomer;, [1 =o otherwise. Since each cell must is the partition function of the pure solvent,
be occupied by either a solvent or a monomer, we t4efT=As -/UA +f( WA - WAA) (8b)
have the constraint

and
[fl + lj = 1. (3) a(eaaB) = E + WA - 2 WAB (8c)

The partition function Z. I EBB I for a given
configuration of interacting bonds I EBB I can be The sum in (7) iE over all possible configurations
written of monomers j flj . Equation (5) can be written

Z, = Z' I exp (P (lteff n + i (n)
ZV EB I =2 XCXP1 01 AANA +jANB o

N, Wd (9)

(4) where

e~w---p* exp[a( W, 5 )] +( I -p )exp[.a(E)]

=pvexpO(WA + Wa -2WAB)]+( l -p)exp(,6(E + WA -2WAB)]• (10)
I

Equation (9) is obtained using the identity In conclusion, our system is equivalent to a one-
component system with an effective chemical po-

p~e wn +( - )ep e tential Afr given by (8b) and effective energy W•f egiven by (10). From the partition function one can

(III) derive the free energy and all the thermodynamic
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properties of the system. In particular, one can Io- problems simultaneously.'

cate the consolute temperature T, below which the From the above considerations, it follows that if
system separates in the different phases, and the Pa <Pc, where p, is the pure bond-percolation

coexistence curve, threshold, there is no gelation no matter how high

One interesting question is "can we derive the the monomer density. Therefore from Eq. f12)

gelation curve from the free energy?" That is, in a there exists a limiting value of the temperature

temperature-density plane, can we derive from the T,,, with pB( Tm.,) =p, above which there is no

free energy the curve which separates the sol phase gelation. From Eq. (12) it follows that Tma, does

from the gel phase? The answer is no for the not depend on the nature of the solvent.

model that we are considering. In fact the process Thus far we have presented a model to describe

of gelation is related to the connectivity properties the sol-gel phase transition for weak gels. An ex-

of the system; connectivity properties have never plicit expression for p, as function of temperature

been derived from a free energy. has been obtained and a value of temperature Tma,

A "gel" phase is defined to be the phase where a independent of solvent, is predicted above which

nonzero fraction of monomers are bonded together there is no gel. In the next two sections we will

via chemical bonds to form a macroscopic mole- solve this model for the interior of the Cayley tree.

cule. In order to calculate the gelation threshold We will first calculate the equation of state (Sec.

6,(T) we must specify when a pair of monomers III) and then the connectivity properties (Sec. IV).

are bonded. We require that (i) they be nearest Results on this lattice correspond to making

neighbors and (ii) their relative energy be -E. Flory's assumption of no intramolecular interac-

Where two nearest-neighbor monomers satisfy (ii), tions and hence the closed-form expressions we ob-

we say that a bond is present between two mono- tain provide a useful anchor point for theoretical

mers. The probability ps that such a bond is descriptions of this model system.

present between two nearest-neighbor monomers

can be easily palculated and is simply given by19

PB- [H -p.)ePE] 
(12) Ill. EQUATION OF STATE (M = 1)

[p. eow +(I-pu )e#E]  In the preceding section we have shown that the

monomer-solvent solution is equivalent to an effec-
The reversible gelation that we are describing is an tive one-component system with the partition func-

equilibrium situation where bonds are continuously
created and destroyed on a time scale short com-

pared to most observations (weak gels). It definite- 12 ,3
ly does not apply to strong gels. Thus the time 12

scales of weak gels are analogous to those of an- 2 6
nealed random magnets, while strong gels are 0 2 7

analogous to quenched random magnets. 2 4 1

The problem of calculating &g(T) is in some '0 3 8

respects analogous to the usual site- or bond-

percolation problem.' However, it is more com- 21 9 \,9

plex for the following two reasons: (a) In the 20
"pure" site-percolation problem, the particles are (o

randomly distributed, while here they are correlat-
ed according to the Hamiltonian (2) ("correlated" '4 14

percolation). (b) In site percolation, the vertices 12

can be occupied or not and the bonds are always 5 .

prant. In bond percolation the vertices are all ,2

occupied by the particles and the bonds may be

present or absent. In our model the vertices may 'o

be occupied or not and also the bonds may be (b)

present or absent ("site-bond" percolation). The

correlated percolation problem"'-" and the site- FIG. 8. (a) Cayley tree of coordination number f 3.

bond percolation problem" have each been treated The center 0 is connected to branches with origin in

separately, while we have proposed treating both 1,2,3. (b) Example of branch with origin in 0.
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€ tion given by Eq. (9). For such a system we calcu- for the branches I and 2 which have been obtainedr jie here the equation of state for the interior of by cutting, respectively, bonds [01] and [02].
!he Cavley tree, following closely the procedure of Dividing Eq. 1 17a) by Eq. 171bi and using the
Ref 24. translational invariance assumption, we obtain in

To fix the ideas, consider the Cayley tree or the thermodynamic limit the desired expression for
Bethe lattice of coordination number ("functionali- y.

f = 3, with a "center" denoted 0 (Fig. 8(a)].
-ny site is connected to f branches. Any bond, if y =e6(ye8W 1):/(y 18)

.ut divides the tree in two branches. For example,
if we cut the bond [03] we have one branch with
ongin 0 [Fig. 8(b)] and another with origin at 3. A. General functionality

We split the partition function Z.v Z.v( -- )
-Z,( -) where Z.,( +) [ZN( -)] is the partition First we introduce the new variables
function under the condition that site 0 is occupied z =e -W/2 (19a)
empty). They satisfy the following relations: A -(

ZV +)Ze Oz - f
, (19b)ZI 1= o 0- )e zN(+-)+-ZN3(- ]

(I3a) A I= y Z .- (19c)

Equations (15) and (18), generalized to arbitrary

Z.( - -functionality f, become

where Z.v0 +) [Z.v( -)] is the partition function €=(j 4+AZ)/;. 4 - Iz + I ), (20a)
of the branch 0 (Fig. 8(b)] under the condition that
site 0 is occupied (empty). Analogous definitions '=p,(QIUz + H )/CM, +z)J - , (20b)
hold for the partition function relative to branch 3.
•.V0 and N3 are the number of sites, respectively, inq branch 0 and 3. The density of monomers v is which are the desired equations of state coincidingclearly with the Bethe approximation. 4 From (19a), (19b),and (8b), p can be written in the following way:

6= lim [Zv(-)]/[ZN(+)+Z(-)]. (14)
N-. p=exp(00 [As s+ (0)]-[/UA+,-MA(0)] 1),

From Eqs. (13) and (14) (21a)
, (15) where /e(0)i(!)fWn and p4(0) =(-)fW A are

where the chemical potential of species B and A, respec-
tively, in the absence of species A and B.26 Herey = lir [ZN( +)]/[ZNo( - )], W5

e O 'u=pe w a +-(I -p, )e E . (21b)

7 lirn "ZN3 +)I/[ZN 3 (16) From (20a) it follows that M = I corresponds to
the disordered phase. The consolute temperature

Here we have made the assumption of translational T, (or equivalently zc) and the consolute density 0,
invariance. The translational invariance condition are obtained from the equations:
is equivalent to neglecting the surface of the Cay-
Icy tree.

We need an equation for y. To do so we write T
the following relations:

Zo( -)eAEI [ePWZN,(+)+ZN,( -)],
t,-i

( 1 7 a ) 0 o .s # C

2 a)} (5)
Z."Il rI[z N, I + +ZN,(- )]. Ul7b)

i-i FIG. 9. (a) Coexistence curve for the monomer case
Here we have introduced the partition functions (M = I) and (b) for the polymer case (M > > I).
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, extended by Coniglio - ' for correlated percolation.
Here we calculate P in the presence of the "ghost"
field h (Refs. 28 and 29) which plays the same role
as the magnetic field in a ferromagnet. To be
more precise, 9 we introduce a ghost site which is
connected to every site with probability h isee Fig.

0 10). Consequently all the sites that are connected
with the ghost sites are connected to an infinite

FIG. 10. Example of ghost sites for a section of the cluster. The advantage of introducing the ghost
square lattice (a) and Cayley tree tb). field stems from the relation2 s

0or -~ 0 (22,A) S=l-r (7

and Starting from the origin of the elementary cell
[Fig. 8(a)] there are f branches that emanate from

0 (22b) the origin. Given that the origin is occupied by a
aM1  monomer, let Q be the probability that moving

From Eqs. (20a), (20bi, (22a), and (22b) we have along one of the branches there is no infinite clus-
ter attached to the origin. The probability P that

z, =(f -2)/f, 4s = + . (23) the origin, occupied by a monomer, belongs to aninfinite cluster is given by
The spinodal curve 4, is obtained from Eqs. i cut is (28)

(20a) and (22a), P = I -(I -h)Q f . (28)
(A, = I, +lhlZ)/(lS, + 2 #Siz + 1) . (24) Clearly Q satisfies the following relation

HereM1 , is the solution of Eq. (22a) and is given Q = 1 -apa +ap(l -h)Qf , (29)
by where a is the probability that one of the pen-

Ali = -Ft( -LF2- 1 )i (25a) pheral sites of the elementary cell [e.g., site I of
Fig. 8(a)] is occupied under the condition that the

and origin is occupied,

F=z-'(f-2-fz2 ). (25b) a = (ngnO/( ng), (301

The + and - signs in (25a) correspond to the where the angle brackets stand for the usual sta-
two different branches of the spinodal curve. The tistical average
coexistence curve is obtained by putting M = I and
solving (20a) and (20b) for O,,., as function of T ( •. * -e-a, / e-' .m3e)
(Fig. 9). Cordaf

IV. CONNECrIVITY PROPERTIES Now a has already been calculated, 2' with the re-

sult

In this section we investigate the connectivity a = / 1 , +Z) , 32)
properties of the system. In particular, we are in-
terested in the following quantities: (i) the percola- where z is given by Eq. (I9a) and u by Eqs. (I9c)
tion piobability P, defined to be the probability and (20b) (see also Appendix A for a more general
that a given monomer belongs to the infinite clus- case M* l). ps is the probability that the two
ter, (ii) the mean cluster size S, monomers at the origin 0 and at the peripheral site

1 are in a "bound state," and is given by Eq. (12).
S -. s 2n, /Ssn, . (26) From (27)-(29), we have

Here n, is the average number of clusters (mole- ( I +apsQ1 -
cules) per site of s monomers. S = 1 (33)

To calculate P we follow closely the formalism (lI-f l)ap#Q -1

introduced by EIs.am 2 for random percolation and where Q is calculated for h =0.

i
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T m.:.~o~ SO L SOL
... .GEL SOL

0 0.5 1 0.5 1 0 0 0.5 , 0

(a) (b) (c)

FIG. II. Coexistence curve for the monomer-solvent binary mixture and sol-gel phase boundary for three different

solvents (M = I). The solvents have been chosen in such a way that the consolute point is (a) in the sol phase (b) on the

gelation curve, and (c) in the gel phase. T. is the temperature at which the gelation curve meets the coexistence curve.

The situation depicted in (c) is not expected to be observable for usual experimental time scales.

We note that (29) is the same equation as for boundary, Eq. (37), together with the coexistence
random site percolation. In this case apB becomes curve for the binary mixture of monomers and sol-
the monomer density 4i. The equation for h =0 vent, for three good solvents. Changing the sol-
has been studied previously. 27  vent corresponds to changing the parameters

The solution near the percolation threshold is WO- 2 WA,. The solvent parameters have been
chosen in such a way that the consolute point is in

Q (x)=1, x <x (34a) the sol region [Fig. 11 (a)), on the gelation curve

Q(x)- I-[2/(f-2)]e, x > .X (34b) [Fig. 11(b)], and in the gel region [Fig. IM(c)]. We
stress two interesting features:

Here x, =(f - U)-1, x =apy, and e=(x -x )/x. (i) For all solvents there is a temperature TP
From Eqs. (28), (29), and (33), it follows that for (below the consolute temperature T,) at which the
X >X €, coexistence curve crosses the gelation curve. For

Pm_2f/(f-2)]e (35a) T < T. we have coexistence between sol phase and
gel phase. In addition, in Fig. 11 (c) for T. < T

and < T, we have two -possible gel phases. Note that
in a real system, this situation is very difficult to
realize because the monomers form very large clus-

The equation for the gelation threshold 40 is deter- ters for short time scales when the demixion con-

mined by the condition centration 0, is near the gel curve. Therefore 0,
tends to decrease. Hence the situation depicted in

ap8=(f-1)-' . (36) Fig. 11 (c) is no, expected to be realized in prac-

From Eqs. (20) and (32) we find tice.3° Only for an infinite time scale, the mono-
mers act as single elements and phase separation

168=Z2pB(f _ I)/ Lp(f- 1)_ II2  would occur at 0.

(ii) By changing the solvent properties it is possi-
ble to realize the interesting case in which the con-

which is identical to the critical threshold in the solute point lies on gel-sol phase boundary, as
pure correlated case. The only difference is the shown in Fig. 11 (b). We find that this special
change of (f- l )-.(f - 1 )pB. We see that the point Q is realized, if for fixed values of the solute

bond dilution reduces the effective connectivity of parameters (pu,E, Wya) the solvent parameters
the lattice. We also note that, consistent with our (WA - 2 WAp) and T, are related by

general result, we find, from (36) and from the fact - W/2kr, (39a)
that z < 1, the limiting value of the temperature Pa - 1 -e 1 -z•
T,% above which there is no gelation: In fact, from (37) using (39a) and z =z, =f/

p,(Tm) = (f -I)
- . (38) (f-2) we find 0.=T- . This means that critical

point and gelation threshold coincide. Equation
Note that (f - I )- is the percolation threshold for (39a) is actually valid for any lattice and for all
the pure random bond percolation. d. 31

In Fig. 11 we have plotted the sol-gel phase This particular point Q is characterized by the
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divergence of two lengths. One is the usual corre-
lation length r which diverges at the consolute
point, and the other is the characteristic linear di-
mension of the finite clusters (the "connectedness 0-0-
length") 4, which diverges on the sol-gel phase - -

boundary. It is interesting to study the nature of
point Q, which in some respects is analogous to the
point (T =-O,p =Pc ) in the T -p phase diagram of
a randomly dilute ferromagnet. -

From Eqs. (35a) and (35b) we see that along all
the gelation curve, including the Q point, the per-
colation critical exponents are the classical ones if
the parameter x =apR is chosen as variable. Ex-
perimentalists, however, do not measure exponents
along a path of varying x but, for example, along ---'-
the T axis. Therefore let us choose the value of
pB, given by Eq. (39a), so that we obtain the situa-
tion in which the Q point occurs. We can ap-
proach the Q point along the coexistence curve FIG. 12. Polymer chains embedded on a square lat-
(,u = 1) using as variable I T - T, I . We find criti- tice. The wavy line is a bond between two monomers of
cal exponents different from those that we find if two different chains.
we approach the Q point from T > T. In order to
show this we must calculate near T,

x -x, =paa (Li,z)-(f- 1)}- , (39b) be found in Refs. 5 and 33. The polymer is made
of M monomers, each one of which occupies a lat-

with Pa given by Eq. (39a). a( ,,z) given by Eq. tice site (Fig. 12). The solvent molecules, as in the
(32), and ,1 from Eq. (20b) with A= 1. It is case M = 1, fill the remaining sites of the lattice.
straightforward but tedious to show that x -x, The monomer-monomer, solvent-solvent, and
-- T-T, for T > T, and x -x, -(T,-T)"' for monomer-solvent interactions are given by Eq. (1)
T < T, along the coexistence curve. Consequently as before. The partition function becomes
the mean cluster size diverges with a classical ex- ZN I C8 for a given configuration of monomer in-
ponent y. = 1 for T > T, and with a different ex- teraction IEBB I can be written as:
ponent r; = for T < T,.W

This asymmetry above and below T, is not ZNI ERB I=ZhXZR. EBB I (40a)
found in low dimensionality using a Migdal- -0
Kadanoff renormalization-group approach.3' Here Z, is the partition function of the pure sol-
However the critical exponents are found to be vent, given by Eq. (8a), while Z. is the contribu-
given by random percolation exponents along the tion to the partition function which comes from
gelation curve, with a crossover to different those configurations with n polymers,
behavior as the Q point is approached. This same
kind of crossover has also been found near six di- Z. eI 8 8 =e Ade I e O  f" • (40b)
mensions using the e-expansion technique, 32 where cOwIl

the calculations have been done only in the disor- The sum is over all configurations of the n poly-
dered phase (T > T,; A = 1). More study therefore mers, N, is the number of nearest-neighbor pairs
is required to fully understand the critical behavior of monomers, and
near the Q point especially as a function of the
dimensionality of the system. /. =f sy-MA

-((f -2)M +2]( WA - W49)
V. POLYMERS IN A SOLVENT (M > 1) -(M-1)W, ( 41)

In this section we want to extend the previous where AS, and AA are the chemical potentials,
treatment to the case of a solution of polymers in a respectively, of the polymer and the solvent. The
solvent. Treatment of chain percolation can also origin of (41) can be easily understood considering
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tern is equivalent to the grand partition function of
- - - a system of polymers with an effective chemical

t,,., . o,,-z 2potential /,ff given by Eq. (41) and an effective
monomer-monomer interaction W given by Eq.

FIG. 13. Examples of configurations of two dimers (10).
(a) without nearest-neighbor monomers and (b) with two As for the case M = 1, we derive the equation of
nearest-neighbor monomers. state in closed form for the interior of the Cayley

tree. The equation of state is derived in Appendix

,he example of two dimers (n =2.,M =2), as illus- A. Here we give only the result for the monomer

trated in Fig. 13. There are two possible configu- density d,
rations. We have to calculate the energy and the , +

chemical potential of a system made of (N -4) 1h=R(A'+Ajz)/[RjU'+( +R)'Ujz+1) .

solvent molecules. Since the contribution to the Here
chemical potential is A, N in Z, we must subtract =LAt(Alz + 1) /Qst Z)M(f21+1
such a term and add npoly due to the presence of (46a)
two polymer molecules. The contribution to (41)
due to the chemical potential is f (f - 1) (46b)

Lii R [(f -)(f -2 ) + 2 (fl- )M] )4b
'Ue = n1nay-nMA • (42)

and
The contribution to (41) due to the interaction is Aexp{ I l y +Apoy(O)](4)
W')= n [(f-2)M +2]( W.A - WBB) - /A+,()

+ (M - 1) WA + NBB( WA --2 WA, +,EB9) •
where po(O) is the chemical potential of the po-

(43) lymers in absence of solvent, and M,4 (0) is the

The sum nj4 + W t ' = nuff + (Eaa)NBB proves chemical potential of the solvent in absence of po-

Eqs. (40) and (41). lymers; explicit expressions are in Appendix A and

Taking in (40b) the average over all possible z has been defined in Eqs. (19a) and (10). If we set

values of EBB, the partition function ZN = ZN I ey, M = I, Eqs. (45) and (46) reduce to Eqs. (20a) and

becomes (20b) derived in Sec. IIl.
The consolute temperature T, or equivalently

ZN--ZZ. •(44a) zc, is obtained from the two equations

Here -__-0 (or equivalently, - =0), (47a)

ZW e , -0 (or equivalently, =0). (47b)

where W is given by Eq. (8c).

In conclusion, the partition function of our sys- From Eqs. (45) and (47) we find
I

Z' _M,/11[M (f _ I )+ I J+[M (f _ I +I]-I[M (f _ I)I2_M-f _I )+ M(f _-I )+M-_I]1 1
/ 2  (48a)

and The spinodal curve &, can be obtained from Eqs.

, =(R +RM'I
2'z)/(R +(I +R)M 

2z, +M] (45) and (47a)

(48b) 6,=R(As+/s1 z)/[RAi,+(I+R) ti,z+I] , (49)

Clearly for large M, where 1A , is the solution of Eq. (47a) and is given
S-(f -- -)(f - 2)]1/2  by

and (6 - RZW"f 2- uj,=F12±(F2 /4-M-)112 (50a)
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and VI. SUMMARY

F= - M(f- 1)+ I z 2 - (f -2)I/Mz In conclusion we have proposed a model which
(50b) applies to weak gels. We have solved the model in

closed form for the Cayley tree. The general phase
For the case M = l, in order to find the coex- diagrams are in qualitative agreement with the ex-

istence curve ;bc, it was enough to put A = I be- perimental data of Tanaka et al. 34 and Ruiz
cause of the symmetry. This time we have to ap- et a/. 35 This model can also be adapted to explain
ply the "equal area" rule. The conditions for the peculiar effects inherent in the M >> I system3 6

coexistence curve are that the pressure P and the An interesting situation occurs when for a particu-
chemical potential must be the same in coexisting lar solvent the gelation curve ends at the consolute
phases A and B. From the relation dP/dA~rrf=p, point. This point is a higher-order critical point
where p is the density of chains related to the den- where both the correlation length and the connect-
sity of monomers by 0 =Mp. The condition for edness length diverge.
the pressure to be the same is In the Cayley-tree solution, which is valid for

B -r = 0high dimensionality, the critical behavior in the
sol-gel transition exhibits an asymmetry above and

or below the consolute temperature. This asymmetry
B is not found in a renormalization-group approach

J d1Sn ) O in low dimensionality 3i More study needs to be

and for the chemical potential j1(A)=1A(B). In done to investigate the nature of this Q point as
Fig. 14 we have plotted schematically Oc. as a function of the dimensionality. This point presents
function of T. Note that the critical density 0, is analogies with the end of the line of critical points

located much nearer to zero than in the symmetric in the dilute ferromagnets. Such lines of critical
case M = I (Fig. 9). points cannot be obtained with the previous simpli-

The connectivity properties of the system of fled theory of gelation.

chains can also be derived. Here we give only the After this work was completed, several exten- 9
result for the gelation curve 0, (the derivation is sions of the present model were developed. In par-

given in Appendix B), ticular, Barrett3 7 has recently generalized the
present model to incorporate features displayed by

0,-Rz(f- )/1 [ (I +R)(f- 1) the polymeric system hyaluronic acid, which un-
dergoes an order-disorder transition. There are

- 1 ]z + (f-2)2 . (S) two types of side groups, amide and carboxyl, as
Here well as two types of "solvent molecules," potassi-

(52) um ions and phosphate ions. Very recently, De-
lyon et al.3 s found that the present model displays

and p, is given by Eq. (20b). The discussion of a peculiar transition in the region below T,. A
the results for M > I is identical to the M = 1 case, physical interpretation of this effect has been sug-
and the results are indicated in Fig. 14. gested by Klein and Stauffer. 39

T SOL TA SOL T SOL

T-W Tft -4-

GEL T. GEL T, GEL

(0) (b) (c)

FIG. 14. Same as Fig. I I except that M is large (polymer).
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APPENDiX A: POLYMERS IN A SOLVENT,
EQUATION OF STATE

Here we derive the equation of state of a solu-

Bond tion of polymers in a solvent for the intenor of the
Cayley tree. The result was given in Sec. V, Eqs.
(45) and (46). The polymer is made of M mono-

Solvent mers, each one of which occupies a lattice site

molecule (Fig. 15). The partition function Z, is given by
Eqs. (44a) and (44b) which we recall here for con-

Monomer i venience
Z.,V =-Z, Y, Z," (AI1)

aI - (Al

FIG. 15. Polymer chains (heavy line) embedded on a with

Bethe lattice of coordination number f = 3. The open Z, =e .00e e s 
. A2)

circles are the monomers. The dots are the solvent mol- -fi
ecules. The wavy lines are the bonds between monomers
of different chains. All the other quantities are defined in Sec. V.

Consider first the case M =2. Following the
derivation for the M = 1, we consider the CayleyThe special case of the present model in which tree of coordination number 3 [Fig. 8(a)] and write

bonds are considered broken with probability

qB = I -p, =exp(-2J/kT) ZNY=ZNV(-)+ZN(+), (A3)

where ZN( - ) and ZN( + ) are the partition func-
was introduced by Coniglio and Klein3' as a candi- tions under the condition that the origin 0 is,
date for representing "droplets" at the critical respectively, empty or occupied by a monomer. In
point of an Ising model with coupling constant J. the latter case we can write
Numerical studies in two and three dimensions in-
dicate that these site-bond percolation clusters in ZN(+)=ZN[Ol]+ZN[,2]+Z[,3] , (A4)
fact do behave just like Ising droplets in that their where ZN[o,i] (i = 1,2,3) is the partition function
spatial extent becomes infinite at the critical under the condition that the dimer occupies bond
point."° Thus we see that a model introduced in [0,i]. The following relations hold:
connection with polymer gelation would appear to
be of relevance for a completely different ZN[O, 1]I= e l ,I[e wZN,( + )Z,( -)]
problem-that of defining Ising droplets near the i-2
critical point of a thermal phase transition. 3 (AS)

ZV( I -[Zv, +)+Z -. (Ab)
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ZNO[0,I e"(eWZ,( +)+Z,( -)j Zvo( )-= [ZN1 ( + )+ZN1 ( -)]

X[eBWZN( + )+ZNs( -)] Z"V + )+ZN2( -)]. (A9)

X[eDWZ 2(+)+ZN(-)], (A8) Taking the ratio (A8):(A9),

Zo 0 ,[O1 ] e-a(eBWyN,+ I )(ePWyNs + 1 )(elwyv,2+ )ZN(-)ZNv,( -) (A10)

ZNo(-) (yN + l)(yN2 + 1)ZNV,-)

where YN1 = [ZN, ( - )]/ZN,( + )] for any i. From containing the origin on one branch of the Cayley

(A) and taking the limit N--, Eq. (A10) be- tree [Fig. 8(b)] and

comes b =(f M1)M -fM

y/2=e @ff (ePWy + l)3/(y + 1)4, (Al 1) is the number of ways of embedding a polymer

where containing the origin on the Cayley tree [Fig. 8(a)].
The above expressions for a and b, which are valid

y= Um yN for M 2t 2, will be derived at the end of this appen-
N,.f dix. If, for convenience, we introduce the follow-

Note that here we have assumed the independence ing new variables,
upon the particular site i. This assumption is z
equivalent to neglecting the surface effects.

The monomer density in the thermodynamic ' =z-'y, (AI)
limit is given by -2

,M =a -tedz-Mtf-2) (A19)

N-0 R =b /a

From Eqs. (A3)-(A7) f 1- A)
OP&--- (ef- PW l))(f -2) +2(f- 01/M]'

--/ 1+3te (y + 1),s " (A13) Eqs. (AIS) and (A16) become

U=L[(A iz + l)M"- I1]/[(,u I +z)M(f -21 +1
From (All)

(A2 1)
y (eaWy +(A1,) =[R (I4 +R z + A.

7 7(e wy + I )+.' + These two coupled equations represent the

The above calculations can be easily generalized to desired equation of state. Note that (A 19) can be
chains made of M monomers on a Cayley tree of written in a different way. In fact, from (41),
coordination number f. In this case Eqs. (All) (A17), and (10),
and (A 14) becom e )Ulf +2)+1 (A 23)

y C- (eP~y + ) /(AIS) where

(b /a)y (eOwS + l) (AIM

(b/ay (ewy + l)+y + I (A24)

where is the chemical potential of the polymers in ab-

a -1 (f-- 1  1 )-(f -2)M +2] see of solvent, Wom is defined in Eq. (21b), and

is the number of ways of embedding a polymer j (0) = (f/ 2 )Wu (A25)
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is the chemical potential of the solvent in absence a macroscopic molecule (infinite cluster). Consider
of polymers. first the case M = 2, pq = 1. If P is the probability

Now we want to calculate explicitly the expres- that the origin 0 [Fig. 8(a)] occupied by a mono-
sion for a =a (M,f) and b =b(M,f). According to mer, belongs to an infinite cluster, then
their definition we have p [P(01 )+P(02) -P(03)] (B)

f- [p( O)+ p(O2)+ p( 3)] 'BI)a. ) 2 g (M )gM( P(Oi) is the probability that there is a dimer in (Oi)

and belongs to an infinite cluster (i = 1,2,3);
XP(0i) is the fraction of monomers which belong

+f - l)g(M - 1), (A26) to an infinite cluster, p (0i) is the probability that
there is dimer in (0i (i = 1,2,3), b= ,p(0i) is the

f )density of monomers. In the limit of infinite sys-
2 I g(M' )g(M2 ) tens we have P(01 )=P(02) =P(03), and
b2.M 2,=. -p(Ol)=p(02)=p(03). Consequently

P=P(I)/p(0l). This quantity can also be writ-
+fg(M - 1). (A27) ten as

P=I-QQ 3Q4QS (B2)
Here MI andM 2 l and (K)isthe number ofconfigurations of embedding a chain of K bonds in Q2 is the probability that there is no infinite clus-conigunrainh with emedingahin of Khh s in ter in the branch (2.6)- (2.7) under the conditiona given branch with the origin fixed which is given that site 0 is occupied by a monomer.
by Also in the limit of infinite system we have

_I )K-, A> Q2=Q3=Q4'=Q5-Q. Let us calculate Q2=Q,
(K) 1, K=0. (A28) Q I-p 2 0occup(+p2 (0 occup)Q 3 , (3)

From (A26), (A27), and (A28) for M > 2, where p2( 0 occup) is the probability that site 2 is

a (M,.f)= -L(f- 0M -'[(f - 2)M + 2], occupied by a monomer under the condition that 0
' is occupied by a monomer belonging to a different

b (M,f)= -(f - 1)M -ZfM . chain,

The ratio P2(0 occup) = (1 0 1112(+)) /(nHo)

= (n10!1- 2(+))/[(O 1n2( +)
R =- (b/la) V (- 1 )f + (nlo1f2( - ))

[(f-I)(f.-2)+2(f-)/M] where no, is the projector operator on states in

which the polymer occupies position (01). n( +)
and l 2( - ) are the projectors operators on states in

APPENDIX B: PERCOLATION which site 2 is, respectively, occupied or not by a
OF INTERACTING CHAINS monomer. The angle brackets stand for the ther-

mal average. Using the same approach as in Ap-
pendix A we have

Here we consider the connectivity properties of a

system of chains made of M monomers. The (H0 ( + )) =( 1/Z )Zv0 [0,I ]eWZ.( +),
monomers interact with an effective interacion
given by Eq. (10). Two chains are bonded if they (BS)
have at least two monomers bonded. The probabil-
ity pg for two nearest.neighbor monomers being ( oln2(-) ) =(1/Z. )Z.I0[0,1]ZI,(-), (BM
bonded is given by Eq. (12).

We calculate now in the Cayley-tree approxima- where Z.0(0, 1] is the partition function of t1.e
tion the gelation threshold 0,(T), i.e., the mini- branch (0,l)-(0.3) [see Fig. 8(a)], under the condi-
mum density of monomers above which a nonzero tion that there is a dimer in (01). ) and
fraction of monomers are bonded together to form Z.v,( - ) are the partition functions of the other
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branch with origin in 2 under the condition that Q = I -apB +apBQ -' (B 10)
site 2 is, respectively, occupied or empty. 9

From (B4) follows which is the same as Eq. t24) for M = I and h =0
P2(0 occup)=ePWy/(eWy + 1) =Mu,/($iz +z) . with an effective coordination number f. The

gelation threshold will therefore be given by
(B7)

Here y, A,, and z have been defined in Appendix = 
1 /PB(f- ),(B

A. In the case of general X, Eq. (B2) becomes namely

P= 1-Q/, (B8) ', =z/[(!- 1Ip - I], (B12)

where J=M(f-2)+2. And Eq. (13) b s which substituted in Eq. (A22) gives the gelation

Q =I -a +aQ1 - 1 (B9) threshold

anda=- /(sI +z). We introduce a probabilitypB Ot=RZ2(.F-l)/j [(I+R)(-1) -1]z 2 +(1-2)il
that there is a cross link between the nearest- (B13)
neighbor monomers. Then Eq. (B9) becomes where .- I=(f-1 )PI.
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